Extraction of series resistance and mobility degradation parameter in MOSFETs using iterative method

Noureddine Maouhoub, Khalid Rais


Series resistance and mobility attenuation parameter are parasitic phenomena that limit the scaling of advanced MOSFETs. In this work, an iterative method is proposed to extract the series resistance and mobility degradation parameter in short channel MOSFETs. It also allows us to extract the surface roughness amplitude. The principle of this method is based on the exponential model of effective mobility and the least squares methods. From these, two analytical equations are obtained to determine the series resistance and the low field mobility as function of the mobility degradation. The mobility attenuation parameter is extracted using an iterative procedure to minimize the root means squared error (RMSE) value. The results obtained by this technique for a single short channel device have shown the good agreement with measurements data at strong inversion. 


Id-Vg characteristic; Mobility degradation; Mobility modeling; MOSFET; Series resistance; Surface roughness


A. Ortiz-Conde, J.J. Liou, W. Wong, F.J. García-Sánchez, A simple method to extract the difference of the drain and source series resistances in MOSFETs, Electron. Lett. 30 (1994) 1013–1015.

A. Ortiz-Conde, F.J. García-Sánchez, J.J. Liou, An improved method for extracting the difference between drain and source resistances in MOSFETs, Solid State Electron. 39 (1996) 419–421.

G. Niu, J.D. Cressler, S.J. Mathew, S. Subbanna, A total resistance slope-based effectivechannel mobility extraction method for deep submicron CMOS technology, IEEE Trans. Electron Dev. 46 (1999) 1912–1914.

A. EL Abbassi, Y. Amhouche, E. Bendada, R. Rmaily and K. Rais. Characterization of series resistance and mobility attenuation phenomena in short channel MOS transistors. Active and Passive Electronic Components, vol. 24, no1, pp 13-22, 2001.

G.S. Kar, S. Maikap, S.K. Banerjee, S.K. Ray, Series resistance and mobility degradation factor in C-incorporated SiGe heterostructure p-type metal-oxide semiconductorfield-effect transistors, Semicond. Sci. Technol. 17 (2002) 938–941.

F.J. García-Sánchez, A. Ortiz-Conde, A. Cerdeira, M. Estrada, D. Flandre, J.J. Liou, A method to extract mobility degradation and total series resistance of fully-depleted SOI MOSFETs, IEEE Trans. Electron Dev. 49 (2002) 82–88.

D.W. Lin, M.L. Cheng, S.W.Wang, C.C.Wu,M.J. Chen, A constant-mobility method to enable MOSFET series-resistance extraction, IEEE Electron Dev. Lett. 28 (2007) 1132–1134

W.P.N. Chen, P. Su, K.I. Goto, C.H. Díaz, Series resistance and mobility extractionmethod in nanoscale MOSFETs, J. Electrochem. Soc. 156 (2009) H34–H38.

A. Ortiz-Conde, F.J. García Sánchez, J. Muci, D.C. Lugo Muñoz, A.D. Latorre Rey, C.-S. Ho, J.J. Liou, Indirect fitting procedure to separate the effects of mobility degradation and source-and-drain resistance in MOSFET parameter extraction, Microelectron. Reliab. 49 (2009) 689–692.

J. Muci, D. Lugo Muñoz, A. Latorre Rey, A. Ortiz-Conde, F.J. García-Sánchez, C.-S. Ho, J.J. Liou, A new integration-based procedure to separately extract series resistance and mobility degradation in MOSFETs, Semicond. Sci. Technol. 24 (2009) 105015.

J. Muci, A. Latorre-Rey, F.J. García-Sánchez, D. Lugo-Muñoz, A. Ortiz-Conde, C. Ho, J.J. Liou, M.A. Pavanello, R. Doria, Extraction of mobility degradation and source-anddrain resistance in MOSFETs, J. Integr. Circuits and Syst. 5 (2010) 103–109.

N. Maouhoub, K. Rais, Characterization of series resistance and mobility degradationparameter and optimizing choice of oxide thickness in thin oxide N-channelMOSFET, Active and Passive Electron. Compon. 2011 (2011) 713129.

Y.-H. Chang, Y.-J. Liu, A self-consistent extraction procedure for source/drain resistance in MOSFETs, Microelectron. Reliab. 51 (2011) 2049–2052.

T. Chu, R.A. Vega, E. Alptekin, D. Guo, H. Shang, Understanding short channel mobility degradation by accurate external resistance decomposition and intrinsic mobility extraction, J. Appl. Phys. 117 (2015) 064507.

H. Xia, X. Ji, L. Ma, Y. Chen, F. Yan, The comparison of various S/D series resistancesmethods for deeply submicron MOSFETs, Electrochem. Soc. Trans. 60 (2014) 963–968.

J.-C. Guo, Y.-Z. Lo, A new method for accurate extraction of source resistance and effective mobility in nanoscale multifinger nMOSFETs, IEEE Trans. Electron Dev. 62 (2015) 3004–3011.

A. Sucre-González, F. Zárate-Rincón, A. Ortiz-Conde, R. Torres-Torres, F.J. GarcíaSánchez, J. Muci, R.S. Murphy-Arteaga, A DC method to extract mobility degradation and series resistance of multifinger microwave MOSFETs, IEEE Trans. Electron Dev. 63 (2016) 1821–1826.

P.-H. Su, Y. Li, Determination of source-and-drain series resistance in 16-nm-ga FinFET devices, IEEE Trans. Electron Dev. 62 (2015) 1663–1667.

S. Jun, H. Bae, H. Kim, J. Lee, S.–.J. Choi, D.H. Kim, D.M. Kim, Dual-sweep combinational transconductance technique for separate extraction of parasitic resistances in amorphous thin film transistors, IEEE Electron Dev. Lett. 36 (2015) 144–146.

A. Cerdeira, M. Estrada, L.F. Marsal, J. Pallares, B. Iñiguez, On the series resistance in staggered amorphous thin film transistors, Microelectron. Reliab. 63 (2016) 325–335.

A. Ortiz-Condeet al., A review of DC extraction methods for MOSFET series resistance and mobility degradation model parameters, Microelectron. Rel., vol. 69, pp. 1–16, Feb. 2017.

Rodolfo Rodriguez-Davila, Adelmo Ortiz-Conde , Senior Carlos Avila-Avendano , and Manuel A. Quevedo-Lopez, A New Integration-Based Procedure to Extract the Threshold Voltage, the Mobility Enhancement Factor, and the Series Resistance of ThinFilm MOSFETs. IEEE Trans. Electron Dev, 66 (2019), 2979-2985.

DOI: https://doi.org/10.11591/APTIKOM.J.CSIT.158


Copyright (c) 2019 APTIKOM Journal on Computer Science and Information Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN: 2528-2417, e-ISSN: 2528-2425

CSIT Stats


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.